

Looking from top down

Hydrogen Line 1420.405 Mhz

Hydrogen Hydrogen Redshifted Hydrogen Blueshifted Wavelength (nanometers)

Doppler Shift

Red-shifted is moving away from us

Detecting molecular hydrogen line in Milky Way can now be achieved easily and cheaply

- Milky Way hydrogen detection used to be expensive but can now be achieved with very cheap equipment from Amazon/elsewhere, using Software Defined Radio (SDRs) and hydrogen line filter/pre-amp, and satellite dish/other aerial.
- The Society of Amateur Radio Astronomers (USA/"SARA") has produced a project called "Scope in a Box", which led me start hydrogen-line radio astronomy.

Para Grid WiFi Dish Broadside of the Dipole toward the long ends of the dish

WiFi 100cmx60cm Para-grid Orientation

Recall that beam-width is inversely proportional to dish size.

For optimal angular resolution of H1 drift scans, align the 1m side E<>W

How to orientate mesh aerial

From Alex Pettit

Filters, amplifiers and radios

Nooelec SAWBird H1 LNA - cheap and effective

Testing Nooelec SAWBird H1 LNAs for consistency

Using NanoVNA to test each SAWBird

Different SAWBirds

& performance

/ Effect of adding \ Chinese 1400-1427 ∖ MHz cavity filter /

Software

SDR Sharp with IF
Average
Plugin

My preferred software:

ezRA - Easy Radio Astronomy Free 1420 MHz Galactic hydrogen data collection and analysis https://github.com/tedcline/ezRA Windows and Linux

ezRA software is great for collecting and processing data and mapping it over known background of radio sources in Milky Way

(Has own collection program, alternative to SDR# IFAverage Plug-In to collect data) ezRA will also process SDR# data

An example of a detection of the hydrogen line

Frequency of hydrogen 1420.405MHz

Range of frequencies
For hydrogen representing
Doppler shift and hence differences in Velocity

Removing noise using ezra

LRO-H3: The Alex Pettit 21cm Patch Yagi Antenna

- Small
- Light
- Efficient

LRO Map Milky Way Galactic Arms

Measure Velocity Difference

Receding Velocity

Approaching Velocity

Simulation of galactic rotation WITHOUT Dark Matter (Left) vs WITH dark matter (Right); From Wikipedia

Dark Matter - galactic rotation curve from my data

Below is typical Keplarian Rotation Curve which would be expected without dark matter, on right my data (ezRA suite/Pharmigan array)

Enclosed Milky Way galactic mass

Plotting Milky Way Hydrogen Data in 3 spatial dimensions Using data from LRO-H1 (Ptarmigan Array)

=location of our solar system

Mapping Milky Way data to a spherical model outside views

Milky Way Relief Maps (LRO data)

4.87

1.38E1

NanoVNA analysis LRO-H2(SCRT)

Problems with LRO-H2 RT performance that led to this analysis

Very poor signal detection – hardly any hydrogen line.

Surprise as adjacent to smaller LRO-H1(Ptarmigan Array)

which was working.

• Similar arrangement to LRO-H1 re: filters and receiver etc.

- My SAWBird (left) = S21 Logmax at 1420MHz = the response curve dips down to 6.03 db → indicates "suck-out"
- Should be flat at anything up to +25dB on NanoVNA around 1420MHz

 Jason's SAWBird (right) for comparison

There are TWO types of SMA connectors!!!!

	SMA	RPSMA	
Male			plastic
Female			metallic shield

Connector coax @ end male RP-SMA & connecting to female SMA so centre conductor not connected − as soon as added RP-SMA→SMA adapter into chain NanoVNA went from -32dB→-2dB

Output on ezRA's ezCol software from LRO-H2 post-sorting our adapter connectors & changing ref frequency to 1417MHz (to hit RFI there) – much better!!

LRO-H2 Data Collection Timelapse after correcting issues.

LRO-H2 Data Collection Timelapse after correcting issues.

Even on just two elevation points from this solar cooker dish allows some measurement of mass of Milky Way

Choosing a PC to record dataI chose Windows-based Mini-PC

- 2nd hand mini-PCs are very cheap £85 buys off ebay Levono i5, 8GB RAM, 256GB SSD. A little extra increases RAM and SSD.
- RealVNC for remote connection I opted for this rather than Remote Desktop as latter causes issues with audio inputs on remote computer – free RealVNC account gives three remote PCs per account – I now have three accounts!
- Raspberry Pis, Ardinos, Linux machines are all options too

Contact Details: Dr Andrew Thornett M6THO andrew@thornett.net www.astronomy.me.uk www.astronomy.network